四维物体也是如此,在被拍成三维物体的过程中,在三维世界中所呈现出来的体积也会膨胀,原本他们只是一个截面的投影出现在三维世界之中,体积和三维世界的基本粒子几乎相同,可随着被拍扁之后,他们所有的细节都以一个平面呈现在三维世界之中。这就让质子变得极为宏观,甚至可以直接用肉眼看到。
这也很好的解释了,四维展开之后的智子为什么不是四维结构,而是一个空心的球体,这说明他其实并没有完全展开,只是把四维结构全部释放在了三维空间之中,不然的话,即便是在三维世界中观察,质子依旧会是一个质子,依旧是常规手段无法观测的微观粒子。
纠正了这个错误之后,科学家们的思路瞬间就开阔了,也想到了该如何用这个球形的结构,相比于三体人只是在这个空心球体的表面进行凋刻,毫无疑问对这样一个空间结构太过浪费了,其实空心球体的内部,同样也是可以凋刻结构的,而且所占据的体积要比球形的,表面一层大的多。
这样一来,即便不能像二维展开一样,在那样大的平面之上进行操作,他们也可以在一片立体的空间之中,搭建自己的操作系统。
激光可以对质子四维展开之后表现出来的空间结构进行扭曲,按着三体人搭建硬件系统的逻辑,科学家们开始从最简单的逻辑门,对于智能粒子的操作系统进行搭建。
有了曾经搭建计算机的经验,这个过程并不困难,通过激光对于质子宏观结构的操控,难度也比想象中要小许多,虽然目前的加工都是毫米尺寸的,显得非常简陋,但在宏观结构展开到最大的情况下,质子的球形结构可以展开到半径十五米,巨大的体积上这种看起来相当简陋的加工,依旧能搭建起相对较为复杂的计算系统。
蓝诺和其他的科学家本来也没打算做到一步登天,上来就能媲美智子的程度,能够作为一种可控的高能粒子,本身就已经很让人惊喜了。
在经过了半个月时间的改造和调试之后,人类的第一颗可控质子被制造出来,它能实现的功能其实非常有限。
只能实现录音录像,充当辅助计算单元,除此之外,还有高速飞行能力,几乎可以达到光速,这也算是科研团队在三体人的智子身上学到的最重要的一份技术了。
】
也就是向真空中借用能量,每一个基本的粒子的涨落的过程中都可以向真空中借用能量,然后等到他衰变的时候再进行归还。在这个世界比较通俗的说法就是量子涨落。
智子能够不
本章未完,请点击下一页继续阅读!